
Intel Architecture Software Developer’s Manual 45-107

F (FNOP — FYL2XP1)

F (FNOP — FYL2XP1) 45

45.1 FNOP—No Operation

Description
Performs no FPU operation. This instruction takes up space in the instruction stream but does not
affect the FPU or machine context, except the EIP register.

FPU Flags Affected
C0, C1, C2, C3 undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

45.2 FPATAN—Partial Arctangent

Description
Computes the arctangent of the source operand in register ST(1) divided by the source operand in
register ST(0), stores the result in ST(1), and pops the FPU register stack. The result in register
ST(0) has the same sign as the source operand ST(1) and a magnitude less than +π.

The FPATAN instruction returns the angle between the X axis and the line from the origin to the
point (X,Y), where Y (the ordinate) is ST(1) and X (the abscissa) is ST(0). The angle depends on
the sign of X and Y independently, not just on the sign of the ratio Y/X. This is because a point (−

Opcode Instruction Description

D9 D0 FNOP No operation is performed.

Opcode Instruction Description

D9 F3 FPATAN Replace ST(1) with arctan(ST(1)/ST(0)) and pop the register stack

45-108 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

X,Y) is in the second quadrant, resulting in an angle between π/2 and π, while a point (X,−Y) is in
the fourth quadrant, resulting in an angle between 0 and −π/2. A point (−X,−Y) is in the third
quadrant, giving an angle between −π/2 and −π.

The following table shows the results obtained when computing the arctangent of various classes
of numbers, assuming that underflow does not occur.

NOTES:
1. FMeans finite-real number.
2. *Table“Invalid Arithmetic Operations and the Masked Responses to Them”, specifies that the ratios 0/0 and

∞/∞ generate the floating-point invalid arithmetic-operation exception and, if this exception is masked, the
real indefinite value is returned. With the FPATAN instruction, the 0/0 or ∞/∞ value is actually not calculated
using division. Instead, the arctangent of the two variables is derived from a standard mathematical
formulation that is generalized to allow complex numbers as arguments. In this complex variable formulation,
arctangent(0,0) etc. has well defined values. These values are needed to develop a library to compute
transcendental functions with complex arguments, based on the FPU functions that only allow real numbers
as arguments.

There is no restriction on the range of source operands that FPATAN can accept.

Intel Architecture Compatibility
The source operands for this instruction are restricted for the 80287 math coprocessor to the
following range:

0 ≤ |ST(1)| < |ST(0)| < +∞

Operation
ST(1) ← arctan(ST(1) / ST(0));
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0
= not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

ST(0)

-• −F −0 +0 +F +∞ NaN

-• −3π/4* −π/2 −π/2 −π/2 −π/2 −π/4* NaN

ST(1) −F -p −π to −π/2 −π/2 −π/2 −π/2 to −0 -0 NaN

−0 -p -p -p* −0* −0 −0 NaN

+0 +π +π +π* +0* +0 +0 NaN

+F +π +π to +π/2 +π/2 +π/2 +π/2 to +0 +0 NaN

+∞ +3π/4* +π/2 +π/2 +π/2 +π/2 +π/4* NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Intel Architecture Software Developer’s Manual 45-109

F (FNOP — FYL2XP1)

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

45.3 FPATAN—Partial Arctangent

Description
Computes the remainder obtained from dividing the value in the ST(0) register (the dividend) by
the value in the ST(1) register (the divisor or modulus), and stores the result in ST(0). The
remainder represents the following value:

Remainder = ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by truncating the real-number quotient of [ST(0) /
ST(1)] toward zero. The sign of the remainder is the same as the sign of the dividend. The
magnitude of the remainder is less than that of the modulus, unless a partial remainder was
computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not occur and the
rounding control has no effect. The following table shows the results obtained when computing the
remainder of various classes of numbers, assuming that underflow does not occur.

Opcode Instruction Description

D9 F8 FPREM Replace ST(0) with the remainder obtained from
dividing ST(0) by ST(1)

ST(1)

-• −F −0 +0 +F +∞ NaN

-• * * * * * * NaN

ST(0) −F ST(0) −F or −0 ** ** −F or −0 ST(0) NaN

−0 −0 −0 * * −0 −0 NaN

+0 +0 +0 * * +0 +0 NaN

45-110 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

NOTES:
1. FMeans finite-real number.
2. *Indicates floating-point invalid-arithmetic-operand (#IA) exception.
3. **Indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is ∞, the result
is equal to the value in ST(0).

The FPREM instruction does not compute the remainder specified in IEEE Std 754. The IEEE
specified remainder can be computed with the FPREM1 instruction. The FPREM instruction is
provided for compatibility with the Intel 8087 and Intel287 math coprocessors.

The FPREM instruction gets its name “partial remainder” because of the way it computes the
remainder. This instructions arrives at a remainder through iterative subtraction. It can, however,
reduce the exponent of ST(0) by no more than 63 in one execution of the instruction. If the
instruction succeeds in producing a remainder that is less than the modulus, the operation is
complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is set, and the result in
ST(0) is called the partial remainder. The exponent of the partial remainder will be less than the
exponent of the original dividend by at least 32. Software can re-execute the instruction (using the
partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that while executing such a
remainder-computation loop, a higher-priority interrupting routine that needs the FPU can force a
context switch in-between the instructions in the loop.)

An important use of the FPREM instruction is to reduce the arguments of periodic functions. When
reduction is complete, the instruction stores the three least-significant bits of the quotient in the C3,
C1, and C0 flags of the FPU status word. This information is important in argument reduction for
the tangent function (using a modulus of π/4), because it locates the original angle in the correct
one of eight sectors of the unit circle.

Operation
D ← exponent(ST(0)) – exponent(ST(1));
IF D < 64

THEN
Q ← Integer(TruncateTowardZero(ST(0) / ST(1)));
ST(0) ← ST(0) – (ST(1) ∗ Q);
C2 ← 0;
C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 ← 1;
N ← an implementation-dependent number between 32 and 63;
QQ ← Integer(TruncateTowardZero((ST(0) / ST(1)) / 2 (D − N)));
ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2 (D − N));

FI;

FPU Flags Affected
C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit of
quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Intel Architecture Software Developer’s Manual 45-111

F (FNOP — FYL2XP1)

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus is 0, dividend is ∞, or unsupported
format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

45.4 FPREM1—Partial Remainder

Description
Computes the IEEE remainder obtained from dividing the value in the ST(0) register (the dividend)
by the value in the ST(1) register (the divisor or modulus), and stores the result in ST(0). The
remainder represents the following value:

Remainder = ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by rounding the real-number quotient of [ST(0) / ST(1)]
toward the nearest integer value. The magnitude of the remainder is less than half the magnitude of
the modulus, unless a partial remainder was computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not occur and the
rounding control has no effect. The following table shows the results obtained when computing the
remainder of various classes of numbers, assuming that underflow does not occur.

Opcode Instruction Description

D9 F5 FPREM1 Replace ST(0) with the IEEE remainder obtained from
dividing ST(0) by ST(1)

ST(1)

-• −F −0 +0 +F +∞ NaN

-• * * * * * * NaN

ST(0) −F ST(0) ±F or −0 ** ** ±F or −0 ST(0) NaN

−0 −0 −0 * * −0 −0 NaN

45-112 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

NOTES:
1. FMeans finite-real number.
2. *Indicates floating-point invalid-arithmetic-operand (#IA) exception.
3. **Indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is ∞, the result
is equal to the value in ST(0).

The FPREM1 instruction computes the remainder specified in IEEE Std 754. This instruction
operates differently from the FPREM instruction in the way that it rounds the quotient of ST(0)
divided by ST(1) to an integer (see the “Operation” section below).

Like the FPREM instruction, the FPREM1 computes the remainder through iterative subtraction,
but can reduce the exponent of ST(0) by no more than 63 in one execution of the instruction. If the
instruction succeeds in producing a remainder that is less than one half the modulus, the operation
is complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is set, and the result in
ST(0) is called the partial remainder. The exponent of the partial remainder will be less than the
exponent of the original dividend by at least 32. Software can re-execute the instruction (using the
partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that while executing such a
remainder-computation loop, a higher-priority interrupting routine that needs the FPU can force a
context switch in-between the instructions in the loop.)

An important use of the FPREM1 instruction is to reduce the arguments of periodic functions.
When reduction is complete, the instruction stores the three least-significant bits of the quotient in
the C3, C1, and C0 flags of the FPU status word. This information is important in argument
reduction for the tangent function (using a modulus of π/4), because it locates the original angle in
the correct one of eight sectors of the unit circle.

Operation
D ← exponent(ST(0)) – exponent(ST(1));
IF D < 64

THEN
Q ← Integer(RoundTowardNearestInteger(ST(0) / ST(1)));
ST(0) ← ST(0) – (ST(1) ∗ Q);
C2 ← 0;
C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 ← 1;
N ← an implementation-dependent number between 32 and 63;
QQ ← Integer(TruncateTowardZero((ST(0) / ST(1)) / 2 (D − N)));
ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2 (D − N));

FI;

FPU Flags Affected
C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit of
quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

+0 +0 +0 * * +0 +0 NaN

+F ST(0) ±F or +0 ** ** ±F or +0 ST(0) NaN

+∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Intel Architecture Software Developer’s Manual 45-113

F (FNOP — FYL2XP1)

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus (divisor) is 0, dividend is ∞, or
unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

45.5 FPTAN—Partial Tangent

Description
Computes the tangent of the source operand in register ST(0), stores the result in ST(0), and pushes
a 1.0 onto the FPU register stack. The source operand must be given in radians and must be less
than ±263. The following table shows the unmasked results obtained when computing the partial
tangent of various classes of numbers, assuming that underflow does not occur.

NOTES:
1. FMeans finite-real number.
2. *Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Opcode Instruction Clocks Description

D9 F2 FPTAN 17-173 Replace ST(0) with its tangent and push 1
onto the FPU stack.

ST(0) SRC ST(0) DEST

-• *

−F −F to +F

−0 −0

+0 +0

+F −F to +F

+∞ *

NaN NaN

45-114 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and
the value in register ST(0) remains unchanged. The instruction does not raise an exception when
the source operand is out of range. It is up to the program to check the C2 flag for out-of-range
conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruction
with a divisor of 2π. See “Pi”, for a discussion of the proper value to use for π in performing such
reductions.

The value 1.0 is pushed onto the register stack after the tangent has been computed to maintain
compatibility with the Intel 8087 and Intel287 math coprocessors. This operation also simplifies
the calculation of other trigonometric functions. For instance, the cotangent (which is the
reciprocal of the tangent) can be computed by executing a FDIVR instruction after the FPTAN
instruction.

Operation
IF ST(0) < 263
THEN

C2 ← 0;
ST(0) ← tan(ST(0));
TOP ← TOP − 1;
ST(0) ← 1.0;

ELSE (*source operand is out-of-range *)
C2 ← 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0
= not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise, cleared to
0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

Intel Architecture Software Developer’s Manual 45-115

F (FNOP — FYL2XP1)

45.6 FRNDINT—Round to Integer

Description
Rounds the source value in the ST(0) register to the nearest integral value, depending on the current
rounding mode (setting of the RC field of the FPU control word), and stores the result in ST(0).

If the source value is ∞, the value is not changed. If the source value is not an integral value, the
floating-point inexact-result exception (#P) is generated.

Operation
ST(0) ← RoundToIntegralValue(ST(0));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0
= not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#P Source operand is not an integral value.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 FC FRNDINT Round ST(0) to an integer.

45-116 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

45.7 FRSTOR—Restore FPU State

Description
Loads the FPU state (operating environment and register stack) from the memory area specified
with the source operand. This state data is typically written to the specified memory location by a
previous FSAVE/FNSAVE instruction.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures “Protected Mode FPU State Image in
Memory, 32-Bit Format” through “Real Mode FPU State Image in Memory, 16-Bit Format”, show
the layout in memory of the stored environment, depending on the operating mode of the processor
(protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode,
the real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes
immediately follow the operating environment image.

The FRSTOR instruction should be executed in the same operating mode as the corresponding
FSAVE/FNSAVE instruction.

If one or more unmasked exception bits are set in the new FPU status word, a floating-point
exception will be generated. To avoid raising exceptions when loading a new operating
environment, clear all the exception flags in the FPU status word that is being loaded.

Operation
FPUControlWord ← SRC(FPUControlWord);
FPUStatusWord ← SRC(FPUStatusWord);
FPUTagWord ← SRC(FPUTagWord);
FPUDataPointer ← SRC(FPUDataPointer);
FPUInstructionPointer ← SRC(FPUInstructionPointer);
FPULastInstructionOpcode ← SRC(FPULastInstructionOpcode);
ST(0) ← SRC(ST(0));
ST(1) ← SRC(ST(1));
ST(2) ← SRC(ST(2));
ST(3) ← SRC(ST(3));
ST(4) ← SRC(ST(4));
ST(5) ← SRC(ST(5));
ST(6) ← SRC(ST(6));
ST(7) ← SRC(ST(7));

FPU Flags Affected
The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions
None; however, this operation might unmask an existing exception that has been detected but not
generated, because it was masked. Here, the exception is generated at the completion of the
instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

Opcode Instruction Description

DD /4 FRSTOR m94/108byte Load FPU state from m94byte or m108byte.

Intel Architecture Software Developer’s Manual 45-117

F (FNOP — FYL2XP1)

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

45.8 FSAVE/FNSAVE—Store FPU State

NOTE:
* See “Intel Architecture Compatibility” below.

Description
Stores the current FPU state (operating environment and register stack) at the specified destination
in memory, and then re-initializes the FPU. The FSAVE instruction checks for and handles pending
unmasked floating-point exceptions before storing the FPU state; the FNSAVE instruction does
not.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures “Protected Mode FPU State Image in
Memory, 32-Bit Format” through “Real Mode FPU State Image in Memory, 16-Bit Format”, show

Opcode Instruction Description

9B DD /6 FSAVE m94/108byte
Store FPU state to m94byte or m108byte after checking for
pending unmasked floating-point exceptions. Then re-
initialize the FPU.

DD /6 FNSAVE* m94/108byte
Store FPU environment to m94byte or m108byte without
checking for pending unmasked floating-point exceptions.
Then re-initialize the FPU.

45-118 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

the layout in memory of the stored environment, depending on the operating mode of the processor
(protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode,
the real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes
immediately follow the operating environment image.

The saved image reflects the state of the FPU after all floating-point instructions preceding the
FSAVE/FNSAVE instruction in the instruction stream have been executed.

After the FPU state has been saved, the FPU is reset to the same default values it is set to with the
FINIT/FNINIT instructions (see “FINIT/FNINIT—Initialize Floating-Point Unit” in this chapter).

The FSAVE/FNSAVE instructions are typically used when the operating system needs to perform a
context switch, an exception handler needs to use the FPU, or an application program needs to pass
a “clean” FPU to a procedure.

Intel Architecture Compatibility
For Intel math coprocessors and FPUs prior to the Intel Pentium processor, an FWAIT instruction
should be executed before attempting to read from the memory image stored with a prior FSAVE/
FNSAVE instruction. This FWAIT instruction helps insure that the storage operation has been
completed.

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSAVE instruction to be interrupted prior to being executed
to handle a pending FPU exception. See“No-Wait FPU Instructions Can Get FPU Interrupt in
Window”, for a description of these circumstances. An FNSAVE instruction cannot be interrupted
in this way on a Pentium Pro processor.

Operation
(* Save FPU State and Registers *)
DEST(FPUControlWord) ← FPUControlWord;
DEST(FPUStatusWord) ← FPUStatusWord;
DEST(FPUTagWord) ← FPUTagWord;
DEST(FPUDataPointer) ← FPUDataPointer;
DEST(FPUInstructionPointer) ← FPUInstructionPointer;
DEST(FPULastInstructionOpcode) ← FPULastInstructionOpcode;
DEST(ST(0)) ← ST(0);
DEST(ST(1)) ← ST(1);
DEST(ST(2)) ← ST(2);
DEST(ST(3)) ← ST(3);
DEST(ST(4)) ← ST(4);
DEST(ST(5)) ← ST(5);
DEST(ST(6)) ← ST(6);
DEST(ST(7)) ← ST(7);
(* Initialize FPU *)
FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;

FPU Flags Affected
The C0, C1, C2, and C3 flags are saved and then cleared.

Floating-Point Exceptions
None.

Intel Architecture Software Developer’s Manual 45-119

F (FNOP — FYL2XP1)

Protected Mode Exceptions
#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

45.9 FSCALE—Scale

Description
Multiplies the destination operand by 2 to the power of the source operand and stores the result in
the destination operand. The destination operand is a real value that is located in register ST(0).
The source operand is the nearest integer value that is smaller than the value in the ST(1) register
(that is, the value in register ST(1) is truncated toward 0 to its nearest integer value to form the
source operand). This instruction provides rapid multiplication or division by integral powers of 2
because it is implemented by simply adding an integer value (the source operand) to the exponent
of the value in register ST(0). The following table shows the results obtained when scaling various
classes of numbers, assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D9 FD FSCALE Scale ST(0) by ST(1).

45-120 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

NOTES:
1. FMeans finite-real number.
2. NMeans integer.

In most cases, only the exponent is changed and the mantissa (significand) remains unchanged.
However, when the value being scaled in ST(0) is a denormal value, the mantissa is also changed
and the result may turn out to be a normalized number. Similarly, if overflow or underflow results
from a scale operation, the resulting mantissa will differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT instruction, as
shown in the following example:

FXTRACT;
FSCALE;
FSTP ST(1);

In this example, the FXTRACT instruction extracts the significand and exponent from the value in
ST(0) and stores them in ST(0) and ST(1) respectively. The FSCALE then scales the significand in
ST(0) by the exponent in ST(1), recreating the original value before the FXTRACT operation was
performed. The FSTP ST(1) instruction overwrites the exponent (extracted by the FXTRACT
instruction) with the recreated value, which returns the stack to its original state with only one
register [ST(0)] occupied.

Operation
ST(0) ← ST(0) ∗ 2ST(1);

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0
= not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

ST(1)

−N 0 +N

-• -• -• -•

ST(0) −F −F −F −F

−0 −0 −0 −0

+0 +0 +0 +0

+F +F +F +F

+∞ +∞ +∞ +∞

NaN NaN NaN NaN

Intel Architecture Software Developer’s Manual 45-121

F (FNOP — FYL2XP1)

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

45.10 FSIN—Sine

Description
Calculates the sine of the source operand in register ST(0) and stores the result in ST(0). The
source operand must be given in radians and must be within the range −263 to +263. The following
table shows the results obtained when taking the sine of various classes of numbers, assuming that
underflow does not occur.

NOTES:
1. FMeans finite-real number.
2. *Indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and
the value in register ST(0) remains unchanged. The instruction does not raise an exception when
the source operand is out of range. It is up to the program to check the C2 flag for out-of-range
conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruction
with a divisor of 2π. See “Pi”, for a discussion of the proper value to use for π in performing such
reductions.

Opcode Instruction Description

D9 FE FSIN Replace ST(0) with its sine.

SRC (ST(0)) DEST (ST(0))

-• *

−F −1 to +1

−0 −0

+0 +0

+F −1 to +1

+∞ *

NaN NaN

45-122 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

Operation
IF ST(0) < 263
THEN

C2 ← 0;
ST(0) ← sin(ST(0));

ELSE (* source operand out of range *)
C2 ← 1;

FI:

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0
= not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise, cleared to
0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

45.11 FSINCOS—Sine and Cosine

Description
Computes both the sine and the cosine of the source operand in register ST(0), stores the sine in
ST(0), and pushes the cosine onto the top of the FPU register stack. (This instruction is faster than
executing the FSIN and FCOS instructions in succession.)

Opcode Instruction Description

D9 FB FSINCOS Compute the sine and cosine of ST(0); replace ST(0) with
the sine, and push the cosine onto the register stack.

Intel Architecture Software Developer’s Manual 45-123

F (FNOP — FYL2XP1)

The source operand must be given in radians and must be within the range −263 to +263. The
following table shows the results obtained when taking the sine and cosine of various classes of
numbers, assuming that underflow does not occur.

NOTES:
1. FMeans finite-real number.
2. *Indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and
the value in register ST(0) remains unchanged. The instruction does not raise an exception when
the source operand is out of range. It is up to the program to check the C2 flag for out-of-range
conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruction
with a divisor of 2π. See“Pi”, for a discussion of the proper value to use for π in performing such
reductions.

Operation
IF ST(0) < 263
THEN

C2 ← 0;
TEMP ← cosine(ST(0));
ST(0) ← sine(ST(0));
TOP ← TOP − 1;
ST(0) ← TEMP;

ELSE (* source operand out of range *)
C2 ← 1;

FI:

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 of stack overflow occurs.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0
= not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise, cleared to
0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

SRC DEST

ST(0) ST(1) Cosine ST(0) Sine

-• * *

−F −1 to +1 −1 to +1

−0 +1 −0

+0 +1 +0

+F −1 to +1 −1 to +1

+∞ * *

NaN NaN NaN

45-124 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

45.12 FSQRT—Square Root

Description
Calculates the square root of the source value in the ST(0) register and stores the result in ST(0).

The following table shows the results obtained when taking the square root of various classes of
numbers, assuming that neither overflow nor underflow occurs.

NOTES:
1. FMeans finite-real number.
2. *Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation
ST(0) ← SquareRoot(ST(0));

Opcode Instruction Description

D9 FA FSQRT Calculates square root of ST(0) and stores the result in
ST(0)

SRC (ST(0)) DEST (ST(0))

-• *

−F *

−0 −0

+0 +0

+F +F

+∞ +∞

NaN NaN

Intel Architecture Software Developer’s Manual 45-125

F (FNOP — FYL2XP1)

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if inexact-result exception (#P) is generated: 0 =
not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

Source operand is a negative value (except for −0).

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

45.13 FST/FSTP—Store Real

Description
The FST instruction copies the value in the ST(0) register to the destination operand, which can be
a memory location or another register in the FPU register stack. When storing the value in memory,
the value is converted to single- or double-real format.

Opcode Instruction Description

D9 /2 FST m32real Copy ST(0) to m32real

DD /2 FST m64real Copy ST(0) to m64real

DD D0+i FST ST(i) Copy ST(0) to ST(i)

D9 /3 FSTP m32real Copy ST(0) to m32real and pop register stack

DD /3 FSTP m64real Copy ST(0) to m64real and pop register stack

DB /7 FSTP m80real Copy ST(0) to m80real and pop register stack

DD D8+i FSTP ST(i) Copy ST(0) to ST(i) and pop register stack

45-126 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

The FSTP instruction performs the same operation as the FST instruction and then pops the register
stack. To pop the register stack, the processor marks the ST(0) register as empty and increments the
stack pointer (TOP) by 1. The FSTP instruction can also store values in memory in extended-real
format.

If the destination operand is a memory location, the operand specifies the address where the first
byte of the destination value is to be stored. If the destination operand is a register, the operand
specifies a register in the register stack relative to the top of the stack.

If the destination size is single- or double-real, the significand of the value being stored is rounded
to the width of the destination (according to rounding mode specified by the RC field of the FPU
control word), and the exponent is converted to the width and bias of the destination format. If the
value being stored is too large for the destination format, a numeric overflow exception (#O) is
generated and, if the exception is unmasked, no value is stored in the destination operand. If the
value being stored is a denormal value, the denormal exception (#D) is not generated. This
condition is simply signaled as a numeric underflow exception (#U) condition.

If the value being stored is ±0, ±∞, or a NaN, the least-significant bits of the significand and the
exponent are truncated to fit the destination format. This operation preserves the value’s identity as
a 0, ∞, or NaN.

If the destination operand is a non-empty register, the invalid-operation exception is not generated.

Operation
DEST ← ST(0);
IF instruction = FSTP

THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#U Result is too small for the destination format.

#O Result is too large for the destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

Intel Architecture Software Developer’s Manual 45-127

F (FNOP — FYL2XP1)

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

45.14 FSTCW/FNSTCW—Store Control Word

NOTE: * See “Intel Architecture Compatibility” below.

Description
Stores the current value of the FPU control word at the specified destination in memory. The
FSTCW instruction checks for and handles pending unmasked floating-point exceptions before
storing the control word; the FNSTCW instruction does not.

Opcode Instruction Description

9B D9 /7 FSTCW m2byte Store FPU control word to m2byte after checking for
pending unmasked floating-point exceptions.

D9 /7 FNSTCW* m2byte Store FPU control word to m2byte without checking for
pending unmasked floating-point exceptions.

45-128 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

Intel Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSTCW instruction to be interrupted prior to being
executed to handle a pending FPU exception. See “No-Wait FPU Instructions Can Get FPU
Interrupt in Window”, for a description of these circumstances. An FNSTCW instruction cannot be
interrupted in this way on a Pentium Pro processor.

Operation
DEST ← FPUControlWord;

FPU Flags Affected
The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Intel Architecture Software Developer’s Manual 45-129

F (FNOP — FYL2XP1)

45.15 FSTENV/FNSTENV—Store FPU Environment

NOTE: * See “Intel Architecture Compatibility” below.

Description
Saves the current FPU operating environment at the memory location specified with the destination
operand, and then masks all floating-point exceptions. The FPU operating environment consists of
the FPU control word, status word, tag word, instruction pointer, data pointer, and last opcode.
Figures “Protected Mode FPU State Image in Memory, 32-Bit Format” through “Real Mode FPU
State Image in Memory, 16-Bit Format”, show the layout in memory of the stored environment,
depending on the operating mode of the processor (protected or real) and the current operand-size
attribute (16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are used.

The FSTENV instruction checks for and handles any pending unmasked floating-point exceptions
before storing the FPU environment; the FNSTENV instruction does not.The saved image
reflects the state of the FPU after all floating-point instructions preceding the FSTENV/FNSTENV
instruction in the instruction stream have been executed.

These instructions are often used by exception handlers because they provide access to the FPU
instruction and data pointers. The environment is typically saved in the stack. Masking all
exceptions after saving the environment prevents floating-point exceptions from interrupting the
exception handler.

Intel Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSTENV instruction to be interrupted prior to being
executed to handle a pending FPU exception. See“No-Wait FPU Instructions Can Get FPU
Interrupt in Window”, for a description of these circumstances. An FNSTENV instruction cannot
be interrupted in this way on a Pentium Pro processor.

Operation
DEST(FPUControlWord) ← FPUControlWord;
DEST(FPUStatusWord) ← FPUStatusWord;
DEST(FPUTagWord) ← FPUTagWord;
DEST(FPUDataPointer) ← FPUDataPointer;
DEST(FPUInstructionPointer) ← FPUInstructionPointer;
DEST(FPULastInstructionOpcode) ← FPULastInstructionOpcode;

FPU Flags Affected
The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions
None.

Opcode Instruction Description

9B D9 /6 FSTENV m14/28byte
Store FPU environment to m14byte or m28byte after
checking for pending unmasked floating-point
exceptions. Then mask all floating-point exceptions.

D9 /6 FNSTENV* m14/28byte
Store FPU environment to m14byte or m28byte without
checking for pending unmasked floating-point
exceptions. Then mask all floating-point exceptions.

45-130 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

45.16 FSTSW/FNSTSW—Store Status Word

NOTE: * See “Intel Architecture Compatibility” below.

Opcode Instruction Description

9B DD /7 FSTSW m2byte Store FPU status word at m2byte after checking for
pending unmasked floating-point exceptions.

9B DF E0 FSTSW AX Store FPU status word in AX register after checking for
pending unmasked floating-point exceptions.

DD /7 FNSTSW* m2byte Store FPU status word at m2byte without checking for
pending unmasked floating-point exceptions.

DF E0 FNSTSW* AX Store FPU status word in AX register without checking for
pending unmasked floating-point exceptions.

Intel Architecture Software Developer’s Manual 45-131

F (FNOP — FYL2XP1)

Description
Stores the current value of the FPU status word in the destination location. The destination operand
can be either a two-byte memory location or the AX register. The FSTSW instruction checks for
and handles pending unmasked floating-point exceptions before storing the status word; the
FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used primarily in conditional branching (for instance,
after an FPU comparison instruction or an FPREM, FPREM1, or FXAM instruction), where the
direction of the branch depends on the state of the FPU condition code flags. (See“Branching and
Conditional Moves on FPU Condition Codes” This instruction can also be used to invoke
exception handlers (by examining the exception flags) in environments that do not use interrupts.
When the FNSTSW AX instruction is executed, the AX register is updated before the processor
executes any further instructions. The status stored in the AX register is thus guaranteed to be from
the completion of the prior FPU instruction.

Intel Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSTSW instruction to be interrupted prior to being
executed to handle a pending FPU exception. See“No-Wait FPU Instructions Can Get FPU
Interrupt in Window”, for a description of these circumstances. An FNSTSW instruction cannot be
interrupted in this way on a Pentium Pro processor.

Operation
DEST ← FPUStatusWord;

FPU Flags Affected
The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

45-132 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

45.17 FSUB/FSUBP/FISUB—Subtract

Description
Subtracts the source operand from the destination operand and stores the difference in the
destination location. The destination operand is always an FPU data register; the source operand
can be a register or a memory location. Source operands in memory can be in single-real, double-
real, word-integer, or short-integer formats.

The no-operand version of the instruction subtracts the contents of the ST(0) register from the
ST(1) register and stores the result in ST(1). The one-operand version subtracts the contents of a
memory location (either a real or an integer value) from the contents of the ST(0) register and
stores the result in ST(0). The two-operand version, subtracts the contents of the ST(0) register
from the ST(i) register or vice versa.

The FSUBP instructions perform the additional operation of popping the FPU register stack
following the subtraction. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-point
subtract instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FSUB rather than FSUBP.

Opcode Instruction Description

D8 /4 FSUB m32real Subtract m32real from ST(0) and store result in ST(0)

DC /4 FSUB m64real Subtract m64real from ST(0) and store result in ST(0)

D8 E0+i FSUB ST(0), ST(i) Subtract ST(i) from ST(0) and store result in ST(0)

DC E8+i FSUB ST(i), ST(0) Subtract ST(0) from ST(i) and store result in ST(i)

DE E8+i FSUBP ST(i), ST(0) Subtract ST(0) from ST(i), store result in ST(i), and pop
register stack

DE E9 FSUBP Subtract ST(0) from ST(1), store result in ST(1), and pop
register stack

DA /4 FISUB m32int Subtract m32int from ST(0) and store result in ST(0)

DE /4 FISUB m16int Subtract m16int from ST(0) and store result in ST(0)

Intel Architecture Software Developer’s Manual 45-133

F (FNOP — FYL2XP1)

The FISUB instructions convert an integer source operand to extended-real format before
performing the subtraction.

The following table shows the results obtained when subtracting various classes of numbers from
one another, assuming that neither overflow nor underflow occurs. Here, the SRC value is
subtracted from the DEST value (DEST − SRC = result).

When the difference between two operands of like sign is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. This instruction also guarantees that +0 − (−0) =
+0, and that −0 − (+0) = −0. When the source operand is an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of the same
sign, an invalid-operation exception is generated.

NOTES:
1. FMeans finite-real number.
2. IMeans integer.
3. *Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation
IF instruction is FISUB

THEN
DEST ← DEST − ConvertExtendedReal(SRC);

ELSE (* source operand is real number *)
DEST ← DEST − SRC;

FI;
IF instruction is FSUBP

THEN
PopRegisterStack

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

SRC

-• −F or −I −0 +0 +F or +I +∞ NaN

-• * -• -• -• -• -• NaN

−F +∞ ±F or ±0 DEST DEST −F -• NaN

DEST −0 +∞ −SRC ±0 −0 −SRC -• NaN

+0 +∞ −SRC +0 ±0 −SRC -• NaN

+F +∞ +F DEST DEST ±F or ±0 -• NaN

+∞ +∞ +∞ +∞ +∞ +∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

45-134 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Intel Architecture Software Developer’s Manual 45-135

F (FNOP — FYL2XP1)

45.18 FSUBR/FSUBRP/FISUBR—Reverse Subtract

Description
Subtracts the destination operand from the source operand and stores the difference in the
destination location. The destination operand is always an FPU register; the source operand can be
a register or a memory location. Source operands in memory can be in single-real, double-real,
word-integer, or short-integer formats.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB instructions.
They are provided to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register from the
ST(0) register and stores the result in ST(1). The one-operand version subtracts the contents of the
ST(0) register from the contents of a memory location (either a real or an integer value) and stores
the result in ST(0). The two-operand version, subtracts the contents of the ST(i) register from the
ST(0) register or vice versa.

The FSUBRP instructions perform the additional operation of popping the FPU register stack
following the subtraction. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-point
reverse subtract instructions always results in the register stack being popped. In some assemblers,
the mnemonic for this instruction is FSUBR rather than FSUBRP.

The FISUBR instructions convert an integer source operand to extended-real format before
performing the subtraction.

The following table shows the results obtained when subtracting various classes of numbers from
one another, assuming that neither overflow nor underflow occurs. Here, the DEST value is
subtracted from the SRC value (SRC − DEST = result).

When the difference between two operands of like sign is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. This instruction also guarantees that +0 − (−0) =
+0, and that −0 − (+0) = −0. When the source operand is an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of the same
sign, an invalid-operation exception is generated.

Opcode Instruction Description

D8 /5 FSUBR m32real Subtract ST(0) from m32real and store result in ST(0)

DC /5 FSUBR m64real Subtract ST(0) from m64real and store result in ST(0)

D8 E8+i FSUBR ST(0), ST(i) Subtract ST(0) from ST(i) and store result in ST(0)

DC E0+i FSUBR ST(i), ST(0) Subtract ST(i) from ST(0) and store result in ST(i)

DE E0+i FSUBRP ST(i), ST(0) Subtract ST(i) from ST(0), store result in ST(i), and pop
register stack

DE E1 FSUBRP Subtract ST(1) from ST(0), store result in ST(1), and pop
register stack

DA /5 FISUBR m32int Subtract ST(0) from m32int and store result in ST(0)

DE /5 FISUBR m16int Subtract ST(0) from m16int and store result in ST(0)

45-136 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

NOTES:
1. FMeans finite-real number.
2. IMeans integer.
3. *Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation
IF instruction is FISUBR

THEN
DEST ← ConvertExtendedReal(SRC) − DEST;

ELSE (* source operand is real number *)
DEST ← SRC − DEST;

FI;
IF instruction = FSUBRP

THEN
PopRegisterStack

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

SRC

-• −F or −I −0 +0 +F or +I +∞ NaN

-• * +∞ +∞ +∞ +∞ +∞ NaN

−F -• ±F or ±0 −DEST −DEST +F +∞ NaN

DEST −0 -• SRC ±0 +0 SRC +∞ NaN

+0 -• SRC −0 ±0 SRC +∞ NaN

+F -• −F −DEST −DEST ±F or ±0 +∞ NaN

+∞ -• -• -• -• -• * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Intel Architecture Software Developer’s Manual 45-137

F (FNOP — FYL2XP1)

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

45.19 FTST—TEST

Description
Compares the value in the ST(0) register with 0.0 and sets the condition code flags C0, C2, and C3
in the FPU status word according to the results (see table below).

Opcode Instruction Description

D9 E4 FTST Compare ST(0) with 0.0.

Condition C3 C2 C0

ST(0) > 0.0 0 0 0

ST(0) < 0.0 0 0 1

ST(0) = 0.0 1 0 0

Unordered 1 1 1

45-138 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

This instruction performs an “unordered comparison.” An unordered comparison also checks the
class of the numbers being compared (see “FXAM—Examine” in this chapter). If the value in
register ST(0) is a NaN or is in an undefined format, the condition flags are set to “unordered” and
the invalid operation exception is generated.

The sign of zero is ignored, so that –0.0 = +0.0.

Operation
CASE (relation of operands) OF

Not comparable: C3, C2, C0 ← 111;
ST(0) > 0.0: C3, C2, C0 ← 000;
ST(0) < 0.0: C3, C2, C0 ← 001;
ST(0) = 0.0: C3, C2, C0 ← 100;

ESAC;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 See above table.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA The source operand is a NaN value or is in an unsupported format.

#D The source operand is a denormal value.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

45.20 FUCOM/FUCOMP/FUCOMPP—Unordered Compare
Real

Opcode Instruction Description

DD E0+i FUCOM ST(i) Compare ST(0) with ST(i)

DD E1 FUCOM Compare ST(0) with ST(1)

DD E8+i FUCOMP ST(i) Compare ST(0) with ST(i) and pop register stack

DD E9 FUCOMP Compare ST(0) with ST(1) and pop register stack

DA E9 FUCOMPP Compare ST(0) with ST(1) and pop register stack twice

Intel Architecture Software Developer’s Manual 45-139

F (FNOP — FYL2XP1)

Description
Performs an unordered comparison of the contents of register ST(0) and ST(i) and sets condition
code flags C0, C2, and C3 in the FPU status word according to the results (see the table below). If
no operand is specified, the contents of registers ST(0) and ST(1) are compared. The sign of zero is
ignored, so that –0.0 = +0.0.

NOTE: *Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.

An unordered comparison checks the class of the numbers being compared (see “FXAM—
Examine” in this chapter). The FUCOM instructions perform the same operations as the FCOM
instructions. The only difference is that the FUCOM instructions raise the invalid-arithmetic-
operand exception (#IA) only when either or both operands are an SNaN or are in an unsupported
format; QNaNs cause the condition code flags to be set to unordered, but do not cause an exception
to be generated. The FCOM instructions raise an invalid-operation exception when either or both
of the operands are a NaN value of any kind or are in an unsupported format.

As with the FCOM instructions, if the operation results in an invalid-arithmetic-operand exception
being raised, the condition code flags are set only if the exception is masked.

The FUCOMP instruction pops the register stack following the comparison operation and the
FUCOMPP instruction pops the register stack twice following the comparison operation. To pop
the register stack, the processor marks the ST(0) register as empty and increments the stack pointer
(TOP) by 1.

Operation
CASE (relation of operands) OF

ST > SRC: C3, C2, C0 ← 000;
ST < SRC: C3, C2, C0 ← 001;
ST = SRC: C3, C2, C0 ← 100;

ESAC;
IF ST(0) or SRC = QNaN, but not SNaN or unsupported format

THEN
C3, C2, C0 ← 111;

ELSE (* ST(0) or SRC is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN
C3, C2, C0 ← 111;

FI;
FI;
IF instruction = FUCOMP

THEN
PopRegisterStack;

FI;
IF instruction = FUCOMPP

THEN
PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Comparison Results C3 C2 C0

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1

45-140 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

C0, C2, C3 See table on previous page.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA One or both operands are SNaN values or have unsupported formats. Detection
of a QNaN value in and of itself does not raise an invalid-operand exception.

#D One or both operands are denormal values.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

45.21 FWAIT—Wait

See entry for WAIT/FWAIT—Wait.

45.22 FXAM—Examine

Description
Examines the contents of the ST(0) register and sets the condition code flags C0, C2, and C3 in the
FPU status word to indicate the class of value or number in the register (see the table below).

.

Opcode Instruction Description

D9 E5 FXAM Classify value or number in ST(0)

Class C3 C2 C0

Unsupported 0 0 0

NaN 0 0 1

Normal finite number 0 1 0

Infinity 0 1 1

Zero 1 0 0

Empty 1 0 1

Denormal number 1 1 0

Intel Architecture Software Developer’s Manual 45-141

F (FNOP — FYL2XP1)

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register is empty or
full.

Operation
C1 ← sign bit of ST; (* 0 for positive, 1 for negative *)
CASE (class of value or number in ST(0)) OF

Unsupported:C3, C2, C0 ← 000;
NaN: C3, C2, C0 ← 001;
Normal: C3, C2, C0 ← 010;
Infinity: C3, C2, C0 ← 011;
Zero: C3, C2, C0 ← 100;
Empty: C3, C2, C0 ← 101;
Denormal: C3, C2, C0 ← 110;

ESAC;

FPU Flags Affected
C1 Sign of value in ST(0).

C0, C2, C3 See table above.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

45.23 FXCH—Exchange Register Contents

Description
Exchanges the contents of registers ST(0) and ST(i). If no source operand is specified, the contents
of ST(0) and ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack to the top of
the stack [ST(0)], so that they can be operated on by those floating-point instructions that can only
operate on values in ST(0). For example, the following instruction sequence takes the square root
of the third register from the top of the register stack:

FXCH ST(3);
FSQRT;
FXCH ST(3);

Opcode Instruction Description

D9 C8+i FXCH ST(i) Exchange the contents of ST(0) and ST(i)

D9 C9 FXCH Exchange the contents of ST(0) and ST(1)

45-142 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

Operation
IF number-of-operands is 1

THEN
temp ← ST(0);
ST(0) ← SRC;
SRC ← temp;

ELSE
temp ← ST(0);
ST(0) ← ST(1);
ST(1) ← temp;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

45.24 FXRSTOR—Restore FP or MMX™ Technology State

Description
The FXRSTOR instruction reloads the FP or MMX™ technology state (environment and registers)
from the memory area defined by m512byte. This data should have been written by a previous
FXSAVE.

The FP or MMX technology environment and registers consist of the following data structure
(little-endian byte order as arranged in memory, with byte offset into row described by right
column).

f

Opcode Instruction Description

0F AE, /1 FXRSTOR m512byte Load the FP or MMX™ technology state from m512byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CS IP FOP Rsvd FTW FSW FCW 0

Reserved Reserved DS DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Intel Architecture Software Developer’s Manual 45-143

F (FNOP — FYL2XP1)

Three fields in the floating-point save area contain reserved bits that are not indicated in the table:

FOP The lower 11-bits contain the opcode, upper 5-bits are reserved.

IP & DP 32-bit mode: 32-bit IP-offset.
16-bit mode: lower 16-bits are IP-offset and upper 16-bits are reserved.

The term, “Reserved,” is as defined in “Notation Conventions”. Reserved bits are undefined, and
using them risks incompatibility with future Intel Achitecture processors. Furthermore, all
“Reserved” fields in the tag word area should be set specifically to zero on a restore, or in cases
where the software is attempting to initalize a floating-point context.

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

Reserved 160

Reserved 176

Reserved 192

Reserved 208

Reserved 224

Reserved 240

Reserved 256

Reserved 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Reserved 416

Reserved 432

Reserved 448

Reserved 464

Reserved 480

Reserved 496

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

45-144 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

Unlike the FRSTOR instruction, FXRSTOR does not fault when loading an image from memory
that contains a pending exception in the Floating-Point Status Word (FSW); only the next
occurence of this unmasked exception will result in the error condition being asserted. It also does
not flush pending x87-FP exceptions. To check and raise exceptions when loading a new operating
environment, use FWAIT after FXRSTOR.

Operation
FPUControlWord <— SRC(FPUControlWord);
FPUStatusWord <— SRC(FPUStatusWord);
FPUTagWord <— SRC(FPUTagWord);
FPUDataPointer <— SRC(FPUDataPointer);
FPUInstructionPointer <— SRC(FPUInstructionPointer);
FPULastInstructionOpcode <— SRC(FPULastInstructionOpcode);
ST(0) <— SRC(ST(0));
ST(1) <— SRC(ST(1));
ST(2) <— SRC(ST(2));
ST(3) <— SRC(ST(3));
ST(4) <— SRC(ST(4));
ST(5) <— SRC(ST(5));
ST(6) <— SRC(ST(6));
ST(7) <— SRC(ST(7));

Exceptions
#GP(0) If m512byte is not aligned on a 16-byte boundary.

#AC(0) If alignment check is enabled (CR0.AM = 1, EFLAGS.AC = 1 and CPL = 3)
and m512byte is not aligned on a 16 byte boundary.

#UD If instruction is preceded by a lock prefix.

Numeric Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF (fault-code) If a page fault occurs.

#NM If CR0.EM = 1 or CR0.TS = 1.

#AC If alignment check is enabled, and an unaligned memory reference is made
while the current privilege level is 3.

Protected-Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF (fault-code) If a page fault occurs.

#NM If CR0.EM = 1 or CR0.TS = 1.

#AC If alignment check is enabled, and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
Interrupt 13 If any part of the operand would lie outside of the effective address space from

0 to 0FFFFH.

Intel Architecture Software Developer’s Manual 45-145

F (FNOP — FYL2XP1)

#NM If CR0.EM = 1 or CR0.TS = 1.

Virtual-8086 Mode Exceptions
Same exceptions as in Real-Address Mode.

#PF (fault-code) If a page fault occurs.

#AC If alignment check is enabled, and an unaligned memory reference is made
while the current privilege level is 3.

Notes
State saved with FSAVE and restored with FXRSTOR (and vice versa) results in an incorrect
restoration of state in the processor. Software should not depend on the behavior of the FXRSTOR
instruction when it is preceded by either the REP, REPNE, or operand size override prefix. The
application of these prefixes with FXRSTOR is defined as “reserved,” and processor behavior is
model specific. Using these prefixes with FXRSTOR risks incompatibility with future Intel
processors. The address size prefix has the usual effect on address calculation, but has no effect on
the format of the FXRSTOR image.

The FXRSTOR instruction assumes that the upper byte of the FPU Tag Word is equal to zero. If it
is nonzero, the execution of the FXRSTOR instruction will cause an incorrect state to be generated
in the processor.

Always ensure that FXRSTOR is used in conjunction with the FXSAVE instruction in a
programming environment. Otherwise, ensure that the upper byte of the FPU Tag Word is zero
before the FXRSTOR instruction is executed.

If an environment creates a condition where the upper byte of the FPU Tag Word is nonzero before
execution of the FXRSTOR instruction, the result is an unpredictable system failure due to the
loading of a corrupted state.

45.25 FXSAVE—Store FP or MMX™ Technology State

Description
The FXSAVE instruction writes the current FP or MMX technology state (environment and
registers) to the specified destination defined by m512byte. It does this without checking for
pending unmasked floating-point exceptions, similar to the operation of FNSAVE. Unlike the
FSAVE/FNSAVE instructions, the processor retains the contents of the FP or MMX technology
state in the processor after the particular state has been saved. This instruction has been optimized
to maximize floating-point save performance.

The FXSAVE instruction is used when an operating system needs to perform a context switch or
when an exception handler needs to use the FP and MMX technology units. It cannot be used by an
application program to pass a “clean” FP state to a procedure, because it retains the current state.
An application must explicitly execute an FINIT instruction after an FXSAVE to provide this
functionality.

Opcode Instruction Description

0F AE, /0 FXSAVE m512byte Store FP or MMX™ technology state to m512byte

45-146 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

The save format is as described for the FXRSTOR instruction. All of the fields in bytes 0-160
retain the same internal format as the FSAVE instruction, except for the floating-point tag word
(FTW). Unlike FSAVE, the FXSAVE instruction only saves the FTW valid bits rather than the
entire x87-FP FTW field. The FTW bits are saved by FXSAVE in a non-TOS relative order,
meaning that FR0 is always saved first, followed by FR1, FR2, and so forth.

As an example, if TOS=4 and only ST0, ST1 and ST2 are valid, FSAVE saves the FTW field in the
following format:

where xx is one of (00, 01, 10). A (11) indicates an Empty stack element. The values of 00, 01, and
10 indicate Valid, Zero, and Special, respectively. In this example, FXSAVE would save the
following vector:

The FSAVE format for FTW can be recreated from the FTW valid bits and the stored 80-bit FP data
(assuming the stored data was not the contents of MMX registers) using the following table.

In binary floating-point format, a real number has three parts: a sign bit, a significand, and an
exponent. The significand has two parts: a 1-bit binary integer (referred to as the J-bit) and a binary
fraction.

The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the significand.
The M-bit is defined to be the most significant bit of the fractional portion of the significand (i.e.,
the bit immediately to the right of the decimal place).

If the FXSAVE instruction is immediately preceded by an FP instruction which does not use a
memory operand, then the FXSAVE instruction does not write/update the DP field, in the FXSAVE
image.

ST3 ST2 ST1 ST0 ST7 ST6 ST5 ST4 (TOS=4)

FR7 FR6 FR5 FR4 FR3 FR2 FR1 FR0

11 xx xx xx 11 11 11 11

FR7 FR6 FR5 FR4 FR3 FR2 FR1 FR0

0 1 1 1 0 0 0 0

Exponent
all 1s

Exponent
all 0s

Fraction
all 0s

J and M
bits

FTW valid
bit x87 FTW

0 0 0 0x 1 Special 10

0 0 0 1x 1 Valid 00

0 0 1 00 1 Special 10

0 0 1 10 1 Valid 00

0 1 0 0x 1 Special 10

0 1 0 1x 1 Special 10

0 1 1 00 1 Zero 01

0 1 1 10 1 Special 10

1 0 0 1x 1 Special 10

1 0 0 1x 1 Special 10

1 0 1 00 1 Special 10

1 0 1 10 1 Special 10

For all legal combinations above 0 Empty 11

Intel Architecture Software Developer’s Manual 45-147

F (FNOP — FYL2XP1)

The destination m512byte is assumed to be aligned on a 16-byte boundary. If m512byte is not
aligned on a 16-byte boundary, FXSAVE generates a general protection exception.

Operation
(* Save FPU State and Registers *)
DEST(FPUControlWord) <— FPUControlWord;
DEST(FPUStatusWord) <— FPUStatusWord;
DEST(FPUTagWord) <— Function of (FPUTagWord);
DEST(FPUDataPointer) <— FPUDataPointer;
DEST(FPUInstructionPointer) <— FPUInstructionPointer;
DEST(FPULastInstructionOpcode) <— FPULastInstructionOpcode;
DEST(ST(0)) <— ST(0);
DEST(ST(1)) <— ST(1);
DEST(ST(2)) <— ST(2);
DEST(ST(3)) <— ST(3);
DEST(ST(4)) <— ST(4);
DEST(ST(5)) <— ST(5);
DEST(ST(6))<— ST(6);
DEST(ST(7)) <— ST(7);
(* Does not initialize FPU -- Retains contents from above *)

Exceptions
#GP(0) If m512byte is not aligned on a 16-byte boundary.

#AC(0) If alignment check is enabled (CR0.AM = 1, EFLAGS.AC = 1 and CPL = 3)
and m512byte is not aligned on a 16 byte boundary.

#UD If instruction is preceded by a lock prefix.

Numeric Exceptions
None.

Protected-Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF (fault-code) If a page fault occurs.

#NM If CR0.EM = 1 or CR0.TS = 1.

#AC If alignment check is enabled, and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
Interrupt 13 If any part of the operand would lie outside of the effective address space from

0 to 0FFFFH.

#NM If CR0.EM = 1 or CR0.TS = 1.

Virtual-8086 Exceptions
Same exceptions as in Real-Address Mode

#PF (fault-code) If a page fault occurs.

#AC If alignment check is enabled, and an unaligned memory reference is made
while the current privilege level is 3.

45-148 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

Notes
State saved with FXSAVE and restored with FRSTOR (and vice versa) results in an incorrect
restoration of state in the processor. Software should not depend on the behavior of the FXRSTOR
instruction when it is preceded by either the REP, REPNE, or operand size override prefix. The
application of these prefixes with FXRSTOR is defined as “reserved,” and processor behavior is
model specific. Using these prefixes with FXRSTOR risks incompatibility with future Intel
processors. The address size prefix has the usual effect on address calculation, but has no effect on
the format of the FXSAVE image.

If there is a pending unmasked FP exception at the time FXSAVE is executed, the sequence of
FXSAVE-FWAIT-FXRSTOR results in an incorrect state in the processor. The FWAIT instruction
causes the processor to check and handle pending unmasked FP exceptions. Since the processor
does not clear the FPU state with FXSAVE, the exception is handled, but that fact is not reflected in
the saved image. When the image is reloaded using FXRSTOR, the exception bits in the FSW get
loaded incorrectly.

45.26 FXTRACT—Extract Exponent and Significand

Description
Separates the source value in the ST(0) register into its exponent and significand, stores the
exponent in ST(0), and pushes the significand onto the register stack. Following this operation, the
new top-of-stack register ST(0) contains the value of the original significand expressed as a real
number. The sign and significand of this value are the same as those found in the source operand,
and the exponent is 3FFFH (biased value for a true exponent of zero). The ST(1) register contains
the value of the original operand’s true (unbiased) exponent expressed as a real number. (The
operation performed by this instruction is a superset of the IEEE-recommended logb(x) function.)

This instruction and the F2XM1 instruction are useful for performing power and range scaling
operations. The FXTRACT instruction is also useful for converting numbers in extended-real
format to decimal representations (e.g., for printing or displaying).

If the floating-point zero-divide exception (#Z) is masked and the source operand is zero, an
exponent value of –∞ is stored in register ST(1) and 0 with the sign of the source operand is stored
in register ST(0).

Operation
TEMP ← Significand(ST(0));
ST(0) ← Exponent(ST(0));
TOP← TOP − 1;
ST(0) ← TEMP;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

C0, C2, C3 Undefined.

Opcode Instruction Description

D9 F4 FXTRACT
Separate value in ST(0) into exponent and significand,
store exponent in ST(0), and push the significand onto the
register stack.

Intel Architecture Software Developer’s Manual 45-149

F (FNOP — FYL2XP1)

Floating-Point Exceptions
#IS Stack underflow occurred.

Stack overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#Z ST(0) operand is ±0.

#D Source operand is a denormal value.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

45.27 FYL2X—Compute y ∗ log 2x

Description
Calculates (ST(1) ∗ log2 (ST(0))), stores the result in resister ST(1), and pops the FPU register
stack. The source operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes of numbers,
assuming that neither overflow nor underflow occurs.

NOTES:
1. FMeans finite-real number.

Opcode Instruction Description

D9 F1 FYL2X Replace ST(1) with (ST(1) ∗ log2ST(0)) and pop the
register stack

ST(0)

-• −F ±0 +0 < +F < +1 +1 +F > +1 +∞ NaN

-• * * +∞ +∞ * -• -• NaN

ST(1) −F * * ** +F −0 −F -• NaN

−0 * * * +0 −0 −0 * NaN

+0 * * * −0 +0 +0 * NaN

+F * * ** −F +0 +F +∞ NaN

+∞ * * -• -• * +• +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN

45-150 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

2. *Indicates floating-point invalid-operation (#IA) exception.
3. **Indicates floating-point zero-divide (#Z) exception.

If the divide-by-zero exception is masked and register ST(0) contains ±0, the instruction returns ∞
with a sign that is the opposite of the sign of the source operand in register ST(1).

The FYL2X instruction is designed with a built-in multiplication to optimize the calculation of
logarithms with an arbitrary positive base (b):
logbx = (log2b)

–1 ∗ log2x

Operation
ST(1) ← ST(1) ∗ log2ST(0);
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0
= not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Either operand is an SNaN or unsupported format.

Source operand in register ST(0) is a negative finite value (not −0).

#Z Source operand in register ST(0) is ±0.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

Intel Architecture Software Developer’s Manual 45-151

F (FNOP — FYL2XP1)

45.28 FYL2XP1—Compute y ∗ log 2(x +1)

Description
Calculates the log epsilon (ST(1) ∗ log2(ST(0) + 1.0)), stores the result in register ST(1), and pops
the FPU register stack. The source operand in ST(0) must be in the range:

The source operand in ST(1) can range from −∞ to +∞. If the ST(0) operand is outside of its
acceptable range, the result is undefined and software should not rely on an exception being
generated. Under some circumstances exceptions may be generated when ST(0) is out of range, but
this behavior is implementation specific and not guaranteed.

The following table shows the results obtained when taking the log epsilon of various classes of
numbers, assuming that underflow does not occur.

NOTES:
1. FMeans finite-real number.
2. *Indicates floating-point invalid-operation (#IA) exception.

This instruction provides optimal accuracy for values of epsilon [the value in register ST(0)] that
are close to 0. When the epsilon value (ε) is small, more significant digits can be retained by using
the FYL2XP1 instruction than by using (ε+1) as an argument to the FYL2X instruction. The (ε+1)
expression is commonly found in compound interest and annuity calculations. The result can be
simply converted into a value in another logarithm base by including a scale factor in the ST(1)
source operand. The following equation is used to calculate the scale factor for a particular
logarithm base, where n is the logarithm base desired for the result of the FYL2XP1 instruction:

scale factor = logn 2

Operation
ST(1) ← ST(1) ∗ log2(ST(0) + 1.0);
PopRegisterStack;

Opcode Instruction Description

D9 F9 FYL2XP1 Replace ST(1) with ST(1) ∗ log2(ST(0) + 1.0) and pop the
register stack

1 2 2⁄–())to 1 2 2⁄–()–

ST(0)

−(1 − ()) to −0 −0 +0 +0 to +(1 − ()) NaN

-• +∞ * * -• NaN

ST(1) −F +F +0 −0 −F NaN

−0 +0 +0 −0 −0 NaN

+0 −0 −0 +0 +0 NaN

+F −F −0 +0 +F NaN

+∞ -• * * +∞ NaN

NaN NaN NaN NaN NaN NaN

2 2⁄ 2 2⁄

45-152 Intel Architecture Software Developer’s Manual

F (FNOP — FYL2XP1)

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated:
0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Either operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

